Progressive changes in synaptic inputs to motoneurons in adult sacral spinal cord of a mouse model of amyotrophic lateral sclerosis.

نویسندگان

  • Mingchen Jiang
  • Jenna E Schuster
  • Ronggen Fu
  • Teepu Siddique
  • C J Heckman
چکیده

Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motoneurons. One potential mechanism is excitotoxicity. We studied the behaviors of spinal neurons using an in vitro preparation of the sacral cord from the G93A SOD1 mouse model of ALS. Measurements were conducted at presymptomatic [approximately postnatal day 50 (approximately P50)], early (approximately P90), and late (>P120) stages of the disease. Short-latency reflexes (SRs) in ventral roots, presumably monosynaptic, were evoked by electrical stimulation of a dorsal root. The fraction of motoneurons capable of responding to this activation was evaluated by measuring the compound action potential [total motor activity (TMA)] evoked by antidromic stimulation of the distal ventral root. In mutant SOD1 (mSOD1) mice, both the SR and the TMA decreased with age compared with nontransgenic littermates, ruling out the SR as a source of increasing excitotoxicity. Spinal interneuron activity was assessed using the synchronized ventral root bursts generated by both bath application of blockers of inhibitory neurotransmitters (glycine, GABA(A)) and agonists of glutamate receptors (especially NMDA receptors). After symptom onset, a higher percentage of preparations from mSOD1 mice exhibited bursting, and these bursts exhibited more sub-bursts and a more disorganized pattern. In mSOD1 mice with clear muscle tremor, the ventral roots exhibited spontaneous synchronized bursts, which were highly sensitive to the blockade of NMDA receptors. These data suggest that although short-latency sensory input does not increase as symptoms develop, interneuron activity does increase and may contribute to excitotoxicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Downregulation of the potassium chloride cotransporter KCC2 in vulnerable motoneurons in the SOD1-G93A mouse model of amyotrophic lateral sclerosis.

The balance between excitatory and inhibitory synaptic inputs is critical for the physiological control of motoneurons. The maintenance of a low-intracellular chloride concentration by the potassium chloride cotransporter 2 (KCC2) is essential for the efficacy of fast synaptic inhibition of mature motoneurons in response to the activation of ionotropic γ-aminobutyric acid A and glycine receptor...

متن کامل

Electrophysiological Abnormalities in SOD1 Transgenic Models in Amyotrophic Lateral Sclerosis: The Commonalities and Differences

Since its first description in 1874 by Charcot, the hallmark feature of ALS is the progressive degeneration of upper and lower motoneurons (Charcot, 1874). In the spinal cord, motoneuron degeneration starts long before symptom onset and advances in a size-related fashion, in which large-size alpha-motoneurons degenerate first followed by small-size alpha-motoneurons (Pun et al., 2006; Hegedus e...

متن کامل

Mutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis

Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...

متن کامل

Neuroprotective effect of adult hematopoietic stem cells in a mouse model of motoneuron degeneration.

Degenerative spinal motor diseases, like amyotrophic lateral sclerosis, are produced by progressive degeneration of motoneurons. Their clinical manifestations include a progressive muscular weakness and atrophy, which lead to paralysis and premature death. Current pharmacological therapies fail to stop the progression of motor deficits or to restore motor function. The purpose of our study was ...

متن کامل

Time Course of Axotomy-induced Changes in Synaptophysin Pattern and Synaptic Reaction of Spinal Motoneurons in Adult Rat

Background and Objective: Evaluation of degenerative changes of motoneurons and their related synapses can be useful in understanding the mechanisms of neurodegenerative diseases and their potential treatment. The present electron microscopic and immunohistochemical study investigates the axotomy-induced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 48  شماره 

صفحات  -

تاریخ انتشار 2009